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SUMMARY

This work presents a new implementation of the boundary node method (BNM) for numerical solu-
tion of Laplace’s equation. By coupling the boundary integral equations and the moving least-squares
(MLS) approximation, the BNM is a boundary-type meshless method. However, it still uses the stan-
dard elements for boundary integration and approximation of the geometry, thus loses the advantages
of the meshless methods. In our implementation, here called the boundary face method, the boundary
integration is performed on boundary faces, which are represented in parametric form exactly as the
boundary representation data structure in solid modeling. The integrand quantities, such as the coordinates
of Gauss integration points, Jacobian and out normal are calculated directly from the faces rather than
from elements. In order to deal with thin structures, a mixed variable interpolation scheme of 1-D MLS
and Lagrange Polynomial for long and narrow faces. An adaptive integration scheme for nearly singular
integrals has been developed. Numerical examples show that our implementation can provide much more
accurate results than the BNM, and keep reasonable accuracy in some extreme cases, such as very irregular
distribution of nodes and thin shells. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Meshless techniques to obtain numerical solutions for PDEs without resorting to an element frame
have been popular throughout the computational mechanics community for the past two decades.
This is because that, with mesh-based techniques as the finite element method (FEM) or the
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boundary element method (BEM), the task of mesh generation for complex geometries is often
time-consuming and prone to errors, and the difficulties with re-meshing in problems involving
moving boundaries, large deformations or crack propagation is crucial. Many kinds of meshless
method have been proposed so far [1–10]. These methods can be simply sorted into two categories:
the domain type and the boundary type. The domain-type meshless methods are represented by
the element-free Galerkin method (EFG) [2] which uses a global symmetric weak form and the
shape functions from the moving least-squares approximation. A feature of this method is that
it uses a background cell structure for the ‘energy’ integration. Atluri and his co-workers have
developed two meshless methods of domain type: the meshless local boundary integral equation
(MLBIE) [3] and the meshless local Petrov-Galerkin (MLPG) approach [4]. Both methods use
local weak form over local sub-domains, so that integrals can be evaluated over regularly shaped
domains (for example, circles in 2-D problems and spheres in 3-D problems) and their boundaries.
They called their method ‘truly meshless method’.

The boundary-type meshless methods can be represented by the boundary node method
(BNM) [5, 6] and the Hybrid Boundary Node Method (HdBNM) [7–10]. The BNM couples the
moving least-squares (MLS) and the boundary integral equations (BIE), and uses background cells
for boundary integration as the EFG, while the HdBNM combines the MLS interpolation scheme
with the hybrid displacement variational formulation, and uses local form as the MLPG to avoid
the use of background cells. However, the using of background cells should not be considered as
a drawback of meshless methods if the background cells can be generated without much efforts.
As a matter of fact, in ‘truly meshless’ methods, as each sub-domain usually includes only
one node, the radius has to be properly chosen. To determine the radius of a sub-domain for a
node, one has to calculate the distances between its neighboring nodes. This leads to a fact that
generation of the sub-domains in many cases may need more work than background meshing.
Therefore, the BNM may be a better option than the HdBNM for numerical solution of boundary
value problems. Unfortunately, in the implementation of the BNM for 3-D cases [6], the authors
did not use background cells but the standard elements of FEM or BEM to approximate geometry
of the domain and performed the integration on these elements. In this paper, we present a new
implementation of the BNM. In our implementation, here called the boundary face method (BFM),
the boundary of the domain is represented by faces in parametric form exactly the same as the
B-rep data structure in standard solid modeling packages. Both MLS and boundary integration are
performed in the parametric spaces of the faces. For numerical integration, the faces are meshed
with isoparametric lines and the geometric data, such as the coordinates of Gauss integration
points, the Jacobian and the surface normal at the integration point are calculated directly from the
face, and thus no geometric error is introduced. As the background cells can be so easily obtained,
even easier than the sub-domains in the HdBNM, the new method can seamlessly interact with
CAD packages, which is considered as a demanding feature for solving practical engineering
problems by the computation research community [11].

Formulations of the MLS approximation on a generic surface are developed. To deal with thin
shells, we have developed a mixed variable interpolation scheme of MLS and Lagrange Polynomial
for variable interpolation on long and narrow faces and an adaptive integration scheme for nearly
singular integrals. A number of numerical examples with various geometries are presented, in
which computations are carried out with regular and irregular distribution of nodes. In addition,
we have compared the present method with the BNM with regard to accuracy, convergence and
the sensitivity of the results to the relative location of the source node in a cell. All results have
shown very attractive features of the method.
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The paper is organized as follows. In Section 2, the MLS approximation on a generic 3-D
surface and the mixed interpolation scheme on a long narrow face are described. Section 3 briefly
describes the well-known BIE for potential problems. The adaptive face integration scheme is
demonstrated in Section 4. Numerical examples for 3-D potential problems are given in Section 5.
The paper ends with conclusions in Section 6.

2. THE MLS APPROXIMATION SCHEME ON A GENERIC 3-D SURFACE

An MLS interpolation scheme on a generic surface is proposed here. Since the nodes lie on the
boundary �� of a 3-D body � in the BFM, the MLS approximation is only needed on the bounding
surfaces. It is assumed that, for 3-D problems, the bounding surface �� of a 3-D body is the union
of piecewise smooth segments called faces. The MLS interpolation is performed independently on
each face, respectively, so that the discontinuity at edges and corners is avoided.

The first step for MLS interpolation on a generic surface is to choose a proper coordinate system.
In most solid models, surfaces are represented in parametric forms:

x1= x1(s1,s2), x2= x2(s1,s2), x3= x3(s1,s2) (1)

where the parametric coordinates are defined in the range, s1,s2∈[0,1]. To make use of the B-rep
data structure of the solid models, the MLS interpolation in this study is defined in the same
parametric square. For problems in potential theory, the independent boundary variables are the
potential and its normal gradient. These variables are also expressed in parametric forms as

u(x1, x2, x3) = u(x1(s1,s2), x2(s1,s2), x3(s1,s2))=u(s1,s2)

q(x1, x2, x3) ≡ �u
�n

=q(x1(s1,s2), x2(s1,s2), x3(s1,s2))=q(s1,s2)
(2)

where n is a unit outward normal to �� at the point (x1, x2, x3).
Suppose a set of nodes {sI }, I =1,2, . . . ,N , are constructed on a face, the MLS interpolants ũ

and q̃ for u and q are defined by

ũ(s)=
m∑
j=1

p j (s)a j (s)=pT(s)a(s) (3)

and

q̃(s)=
m∑
j=1

p j (s)b j (s)=pT(s)b(s) (4)

where s is a field point with parametric coordinates (s1,s2), p1=1 and p j (s), j=2, . . . ,m are
monomials in (s1,s2). The monomials p j (s) provide the intrinsic polynomial bases for ũ and q̃ .
In this study, a quadratic background basis is used, i.e.

pT(s)=[1,s1,s2,s21 ,s1s2,s22 ], m=6 (5)
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The coefficient vectors a(s) and b(s) are determined by minimizing weighted discrete L2 norms,
defined as

J1(s) =
N∑
I=1

wI (s)[pT(sI )a(s)− û I ]2 (6)

J2(s) =
N∑
I=1

wI (s)[pT(sI )b(s)− q̂I ]2 (7)

It should be noted here that û I and q̂I , I =1,2, . . . ,N are simply parameters other than the nodal
values of the unknowns ũ I and q̃I in general. This distinction between û I and ũ I (or q̂I and q̃I )
is very important because MLS interpolants lack the delta function property.

Solving for a(s) and b(s) by minimizing J1 and J2 in Equations (6) and (7), and substituting
them into Equations (3) and (4) give a relation that can be written in the forms with interpolation
functions similar to the shape functions in FEM:

ũ(s) =
N∑
I=1

�I (s)û I (8)

q̃(s) =
N∑
I=1

�I (s)q̂I (9)

where

�I (s)=
m∑
j=1

p j (s)[A−1(s)B(s)] j I (10)

with matrices A(s) and B(s) defined by

A(s)=
N∑
I=1

wI (s)p(sI )pT(sI ) (11)

and

B(s)=[w1(s)p(s1),w2(s)p(s2), . . . ,wN (s)p(sN )] (12)

The MLS approximation is well defined only when the matrix A in Equation (11) is non-singular.
The �I (s) is usually called the shape function of the MLS approximation corresponding to the

nodal point sI . From Equations (10) and (12), it is seen that �I (s)=0 when wI (s)=0. The fact
that �I (s) vanishes for s not in the support of nodal point sI preserves the local character of the
MLS approximation.

The partial derivatives of �I (s) are obtained as in Reference [2] to be

�I,k =
m∑
j=1

[p j,k(A
−1B) j I + p j (A

−1B,k+A−1
,k B) j I ] (13)

in which A−1
,k =(A−1),k represents the derivative of the inverse of A with respect to sk,k=1,2,

given by

A−1
,k =−A−1A,k A

−1 (14)

where, (),k denotes �()/�sk .
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In implementing the MLS approximation, the weight functions should be chosen at first. Several
kinds of weight functions can be found in the literatures; the choice of weight functions and the
consequences of a choice are discussed in detail elsewhere [3]. In this study, we use the Gaussian
weight function. The Gaussian weight function corresponding to a node sI can be written by

wI (s)=

⎧⎪⎨
⎪⎩
exp[−(dI /cI )2]−exp[−(d̂I /cI )2]

1−exp[−(d̂I /cI )2]
, 0�dI�d̂I

0, dI�d̂I

(15)

where cI is a constant controlling the shape of the weight function, and d̂I is the size of the support
for the weight function wI . It can be seen from the above equation that the weight function has a
compact support determined by the parameter d̂I . The compact support is also an associated range
of influence of each node. In the past, the shape of the compact support is usually chosen to be
circle in meshless literatures, while in this study, we choose ellipse for the shape of the compact
support with d̂I being the half-length of major axis of the ellipse. Denoting the half-length of
minor axis by d̂ ′

I , we have the following expression for dI :

dI =
√√√√(s1−s I1 )2+ d̂2I

d̂ ′2
I

(s2−s I2 )2 (16)

In order to ensure the regularity of A, the d̂I and d̂ ′
I should be chosen in such a way that they are

large enough to have a sufficient number of nodes which are covered in the domain of definition
of every sample point (N�m). But too large d̂I and d̂ ′

I will lose the local character of the MLS
interpolation, or even lead to an ill-conditioned matrix A. In this study, d̂I and d̂ ′

I are chosen such
that 4m–8m nodes are included in the support of a node.

However, even if the condition (N�m) is satisfied, but the N nodes in the domain of dependence
of the sample point lie on a straight line on the face, then the matrix A becomes singular.
This indicates that the MLS is not applicable to narrow strip surfaces, which exist in many thin
shell structures. To handle this problem, we proposed a mixed interpolation scheme of 1-D MLS
and Lagrange polynomial. Here take a strip surface as an example, which is assumed thin in the
s1 direction and long in the s2 direction. We construct k (3�k�1, and determined by the width
of the strip) rows of nodes on the strip in the s2 direction. The coordinate of s1 and the number
of nodes of each row are sk1 and Nk(Nk�4), respectively. Then the potential u at a point s(s1,s2)
can be interpolated by Lagrange polynomials in the s1 direction:

ũ(s)=
k∑
j=1

ln, j (s1)ũ
j (s2) (17)

where ln, j (s1)=∏
j �=i ((s1−s j1 )/(si1−s j1 )), ũ j (s2) can be obtained by 1-D MLS approximation

within each row of nodes independently, using the following formula:

ũ j (s2)=
Nk∑
I=1

�I (s2)û
k
I (18)

here, �I (s2) is the shape function of the 1-D MLS approximation. For 1-D MLS and its derivative,
please refer References [5, 7].
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For a face that is small in size in both directions, and thus the numbers of nodes distributed
in the two directions are both less than 4, we interpolate the variables by Lagrange polynomials
in two directions. In this case, actually, the face degenerates to a constant, a linear or a quadratic
element of the standard BEM.

3. BOUNDARY INTEGRAL EQUATIONS AND DISCRETIZATIONS

The potential problem in three dimensions governed by Laplace’s equation with boundary condi-
tions is written as

u,i i = 0 ∀x ∈�

u = ū ∀x ∈�u

u,i ni ≡ q= q̄ ∀x ∈�q

(19)

where the domain � is enclosed by �=�u+�q , ū and q̄ are the prescribed potential and the
normal flux, respectively, on the essential boundary �u and on the flux boundary �q , and n is the
outward normal direction to the boundary �, with components ni , i=1,2,3.

The problem can be recast into an integral equation on the boundary. The well-known self-regular
BIE for potential problems in 3-D is

0=
∫

�
(u(s)−u(y))qs(s,y)d�−

∫
�
q(s)us(s,y)d� (20)

where q=�u/�n,y is the source point and s the field point on the boundary. us(s,y) and qs(s,y)
are the fundamental solutions. For 3-D potential problems,

us(s,y) = 1

4�

1

r(s,y)
(21)

qs(s,y) = �us(s,y)
�n

(22)

with r being the Euclidean distance between the source and field points.
The MLS interpolations or the mixed interpolations derived in Section 2 will be used to approx-

imate u and q on the boundary �. The bounding surface is discretized into cells by isoparametric
lines face by face. Substituting Equations (8) and (9) into Equation (20) and dividing � into Nc
cells, we have

0=−
Nc∑
j=1

∫
� j

qs(s,y)
N∑
I=1

(�I (s)−�I (y))û I d�+
Nc∑
j=1

∫
� j

us(s,y)
N∑
I=1

�I (s)q̂I d� (23)

where �I (y) and �I (s) are the contributions from the I th node to the collocation point y and
field point s, respectively. The first term on the right side of Equation (23) is regular in any case.
Therefore, regular Gaussian integration can be used to evaluate it over each cell. However, special
integration techniques are required for the second term, since it will become weakly singular
as s approaches y. When y and s belong to the same cell, the cell is treated as a singular cell
and the special techniques developed in the next section are used to carry out the integration.
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Our integration scheme is different from that developed by Chati and Mukherjee [6] and may
provide better accuracy. This is because we carry out the integrations directly in the parametric
space of a face other than over elements, and thus no geometric error will be introduced.

Even when y and s belong to different cells, they can still be very close to each other. In this
case, the second term on the right side of Equation (23) becomes nearly-singular. This case occurs
when thin structures are involved and when the distribution of nodes is very irregular. We have
also developed an adaptive scheme to calculate nearly singular integrals in the next section.

Equation (23) can be put in a matrix form as

Hû−Gq̂=0 (24)

where û and q̂ contain the approximations to the nodal values of u and q at the boundary nodes. A
well-posed boundary value problem can be solved using Equation (24). However, transformations
between û I and ũ I , q̂I and q̃I is necessary because the MLS interpolants lack the delta function
property of the usual BEM shape functions as mentioned in Section 2. For the panels where ũ is
prescribed, û I is related to ū I by

û I =
N∑

J=1
RI J ũ J =

N∑
J=1

RI J ū J (25)

and for the panels where q̃ is prescribed, q̂I is related to q̄I by

q̂I =
N∑

J=1
RI J q̃J =

N∑
J=1

RI J q̄J (26)

where RI J =[�J (sI )]−1.
The computational efficiency of the proposed method in comparison with 3D domain schemes,

e.g. FEM or EFG, is similar to that of BEM. Actually, considering a 3D mesh with n3 nodes, the
number of boundary nodes is around n2, both the operation count and the memory requirements
for the buildup of matrix equation (24) are of the order O(n4). The operation count increases
to O(n6) if we attempt to solve the equation with conventional direct solvers such as Gaussian
elimination. Therefore, although the dimensionality of a problem at hand is reduced by one, it is
less computationally efficient than domain schemes. However, the proposed method significantly
reduces the human-labor cost of introducing geometric meshes in complex-shaped structures,
which is the aim of the development of a new class of computer methods, the so-called meshless
or element-free methods. Moreover, the computational efficiency of the BFM can be enhanced
dramatically if it is combined with the fast multipole method (FMM) [12–14].

4. WEAKLY AND NEARLY SINGULAR INTEGRATION SCHEMES

4.1. Weakly singular integration

The second term on the right side of Equation (23) becomes a weakly singular integral when y and
s belong to a same cell, and the cell is treated as a singular cell. There have been various methods
proposed in the past to handle weakly singular integrals arising in BEM. Chati and Mukherjee
have used a method suggested by Nagaranjan and Mukherjee [15] to carry out the weakly singular
integration in BNM. Here we propose a new method without using elements. The details follow.
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Figure 1. Weakly singular integration on a cell: (a) cell subdivision and (b) coordinate transformation.

All the cells in BFM are rectangular in shape in the parametric space, because we use isopara-
metric lines of a face to mesh the face into cells. Consider the weakly singular integral over a cell
as shown in Figure 1(a). This can be represented as

I =
∫
cell

O(1/r)d� (27)

Now, the rectangular cell is divided into four triangles in the parametric space. For each triangles,
the following mapping is used (see Figure 1(b)):

sa1 = s01 +(s11 −s01)�

sa2 = s02 +(s12 −s02)�
(28a)

sb1 = s01 +(s21 −s01)�

sb2 = s02 +(s22 −s02)�
(28b)

t1 = ta1 +(tb1 − ta1 )�

t2 = ta2 +(tb2 − ta2 )�
�,�∈[0,1] (28c)

Then the integral I can be written as

I =
4∑

i=1

∫ 1

0

∫ 1

0
O(1/r)JS(s)J

(i)
L (�)d�d� (29)

where JS is the Jacobian of the face, J (i)
L =�S� and

S� =|s11s22 +s21s
0
2 +s01s

1
2 −s21s

1
2 −s01s

2
2 −s11s

0
2 | (30)

which is the area of the triangle in the parametric space, and keeps constant over the triangle. Now,
regular Gaussian integration can be used to evaluate the above integral I . Since the mapping and
the Jacobian are simpler than that of the method used by Chati and Mukherjee [6], our method
may be computationally more efficient. Moreover, because we do not use elements to approximate
the surface, no geometric error is introduced.
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(0.0, 0.0) (1.0, 0.0) 

(1.0, 1.0)(0.0, 1.0) 

P

Figure 2. Subdivision of a cell in parametric space corresponding to a source point P .

4.2. Nearly singular integration

Nearly singularities arise in the BIE when slender or thin structures are considered and in cases
where the boundary node distribution on a surface is very irregular, namely the densities of nodes
along the two directions in parametric space are very different. Accurate evaluation of nearly
singular integrals is a demanding task for successful implementation of BIE analyses. So far many
techniques for dealing with nearly singular integrals have been proposed [16, 17]. Some of them
are effective but involve complicated mathematic transformations of the integrals for a specific
fundamental solution. To provide a general approach that is independent of the problem to be
solved, here we developed an adaptive integration scheme based on the cell subdivision method.
In this scheme, we first calculate the diagonal length of the integration cell, l, and the distance
between the source point and the center of the cell, d , in the real-world-coordinate system. If l
is smaller than d , this cell is taken as a regular integration patch, or it is divided into four equal
subcells (see Figure 2). Then for each subcell, we repeat the above procedure until all patches
become regular. Finally, using Gaussian quadrature for all patches, we can evaluate the integrals
in Equation (23) very accurately even when the source point is very close to the integration cells.
It should be pointed out that the patches are not like the elaborately constructed elements in the
BEM and FEM. The subdivided patches of a same cell change for different source points. They
can be easily constructed in the parametric space. Therefore, using these patches does not affect
the fact that the BFM is a meshless method.

5. ILLUSTRATIVE NUMERICAL RESULTS

The current method has been tested thoroughly for three types of 3-D geometrical objects: a sphere,
a cube, and an elbow pipe. To compare the current method with the BNM, the former two models
are taken from Reference [6]. And the last one, a more geometrically complicated one, is added to
show the advantage of the meshless nature of the present method. In order to assess the accuracy
of the present method, we have used the following three analytical fields, which are also taken
from [6]:
(i) Linear solution:

u= x+ y+z (31)

(ii) Quadratic solution-1:

u= xy+ yz+zx (32)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:320–337
DOI: 10.1002/nme



A BOUNDARY FACE METHOD FOR 3D POTENTIAL PROBLEMS 329

(iii) Quadratic solution-2:

u=−2x2+ y2+z2 (33)

(iv) Cubic solution:

u= x3+ y3+z3−3yx2−3xz2−3zy2 (34)

In all cases, Laplace’s equation ∇2u=0 is solved, together with appropriately prescribed boundary
conditions corresponding to the above analytical solutions.

For the purpose of error estimation and convergence study, a ‘global’ L2 norm error, normalized
by |v|max is defined as follows [6]:

e= 1

|v|max

√
1

N

N∑
i=1

(v
(e)
i −v

(n)
i )2 (35)

where |v|max is the maximum value of u or q over N sample points, the superscripts (e) and (n)

refer to the exact and numerical solutions, respectively.
In all computations, unless indicated otherwise, the support size of the weight function, d̂I in

Equation (15), is taken to be 4.0h, with h being the minimum distance between the neighboring
points, and the parameter cI is taken to be such that d̂I /cI is constant and equal to 4.0.

5.1. Dirichlet problems on a sphere

The first example considers problems in a sphere of radius 2 unit, centered at the origin. The usual
spherical polar coordinates � and � are used. The linear, quadratic and cubic fields (Equations (31)–
(34)) are used as exact solutions. In each case, the Dirichlet boundary conditions corresponding to
the exact solutions are imposed on the surface of the sphere. The results have been obtained for
three sets of nodes: (a) 74 nodes, (b) 143 nodes, and (c) 286 nodes. The L2 errors of nodal values
of q , evaluated using Equation (35), for different sets of nodes and fields are shown in Figure 3.
It can be seen that our method yields very accurate results and have high convergence rate. Figures 4
and 5 show variation in the potential and its directional derivative at locations inside the sphere.
The results are obtained using 74 nodes. The gradient is dotted with the diagonal (x= y= z) in
order to get the directional derivative along this line. Values of u and q , at internal points that are
close to the surface of the body, are calculated by the nearly singular integration scheme described
in Section 4.1. It is seen that results are accurate even when the points are very close to the
boundary.

It has been observed in BNM that the choice of the locations of the collocation nodes on each
cell is an important ingredient for successful implementation of BNM. To compare with the BNM,
we have also studied the influence of the locations of the collocation nodes on the accuracy of the
BFM. In this study, the location of the collocation node on a cell is determined by a parameter
�,0���1, using the following equation:

sP =sL+�(sR−sL)/2 (36)

where, sP is the collocation point, sL and sR are the lower-left and the upper-right corner points,
respectively. Obviously, the collocation point is at the center of the cell when �=1 and at the
lower-left corner of the cell when �=0. Computations have been performed for all the analytical
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Figure 3. Relative errors and convergence rates for Dirichlet problem on a sphere. N is the number of
nodes (one node per cell is used in the BFM).

Figure 4. Variation in potential u along the line x= y= z for a sphere.

fields using 74 nodes. The L2 errors in q for various values of � are presented in Table I. Comparing
with the Table I in Reference [6], it can be found that the accuracy of our method is much less
sensitive to the relative location of the collocation point in a cell than that of the BNM. When �
takes the values of 0.1, 0.5, and 1, the locations of the collocation points in the cells are shown in
Figure 6.
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Figure 5. Variation of directional derivative of potential u along the line x= y= z for a sphere.

Table I. Variation in L2 error in q for Dirichlet problems on a sphere for various locations of
the collocation point in the parent space.

� u= linear (%) u=quadratic-1 (%) u=quadratic-2 (%) u=cubic (%)

0.05 0.420 1.219 1.399 4.042
0.1 0.317 0.886 0.566 2.786
0.2 0.262 0.572 0.511 1.562
0.3 0.214 0.445 0.476 1.021
0.4 0.173 0.375 0.458 0.833
0.5 0.153 0.322 0.447 0.742
0.6 0.145 0.292 0.444 0.608
0.7 0.140 0.250 0.447 0.617
0.8 0.127 0.210 0.391 0.807
0.9 0.131 0.238 0.385 0.914
1.0 0.135 0.281 0.416 0.814

As in Reference [6], our method has also been tried on a more challenging problem which
cannot be described by polynomial approximations. The exact solution of this problem is

u= 2r2

R2
cos2�− 2r2

3R2
− 1

3
(37)

where R is the radius of the sphere and � is the angle measured from the z-axis. The Dirichlet
boundary condition on the surface then becomes

u|(r=R) =cos2� (38)
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Figure 6. Relative locations of the collocation points in cells for various values of �.

Table II. Variation in L2 error in q for Dirichlet problems on a cube for various locations of the
collocation point in the parent space.

� u= linear (%) u=quadratic-1 (%) u=quadratic-2 (%) u=cubic (%)

0.05 0.420 1.219 1.399 0.937
0.1 0.317 0.886 0.566 0.928
0.2 0.262 0.572 0.511 1.000
0.3 0.214 0.445 0.476 0.897
0.4 0.173 0.375 0.458 0.748
0.5 0.153 0.322 0.447 0.606
0.6 0.145 0.292 0.444 0.485
0.7 0.140 0.250 0.447 0.387
0.8 0.127 0.210 0.391 0.313
0.9 0.131 0.238 0.385 0.261
1.0 0.135 0.281 0.416 0.243

Results are obtained with 74 nodes. The global L2 error for q is 0.114%, which is nearly half of
that obtained by the BNM.

5.2. Dirichlet and mixed problems on a cube

The case of the field for a 2×2×2 cubic domain governed by Laplace’s equation is presented
as the second example. The cube faces are x=±1, y=±1, and z=±1, respectively. As in the
first example, Equations (31)–(34) are used as the exact solutions. Dirichlet problems are solved
for which the essential boundary conditions are imposed on all faces corresponding to the exact
solutions. The 6×6 nodes on each face are used. Results have been obtained for various locations
of the collocation points in the cells. The L2 errors of nodal values of q with variation in � are
presented in Table II. Again, in strong contrast with the results in Reference [6], the accuracy of
our method is not dependent on the choice of the locations of the collocation points. In all cases,
even when the collocation points are very close to the corners of the cells, our method has yielded
satisfactory results.

A boundary value problem with mixed boundary conditions has also been solved. The quadratic-2
solution has been used here. The essential boundary conditions are imposed on faces x=±1 of the
cube and the natural boundary conditions on faces y=±1 and z=±1. The numerical results have
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Figure 7. Relative errors of u and q and convergence rate for Dirichlet problem on a cube.

Figure 8. Node distributions on a cube: (a) 12×12 regular nodes; (b) 8×18 irregular
nodes; and (c) 4×36 irregular nodes.

been obtained using three sets of nodes: (a) 4×4 nodes on each face (totally 96 cells), (b) 5×5 nodes
on each face (totally 150 cells), and (c) 6×6 nodes on each face (totally 216 cells). Figure 7 shows the
L2 errors of nodal values of u and q when different numbers of nodes are used. It can be clearly seen
that excellent results have been obtained and high convergence rates achieved.

In order to understand the effect of node distribution on the accuracy of the obtained results, a new
case has been studied. In the case study, totally 864 nodes are used, of which three spacing patterns
on each face are considered: (a) 12×12 regular distribution, (b) 8×18 irregular distribution, and
(c) 4×36 very irregular distribution. The node distributions are shown in Figure 8. The analytical
fields expressed by Equations (31)–(34) have been tested. The L2 errors of nodal values for q
(denoted by Err q) and time required for constructing the coefficient matrices (denoted by Mat t)
and solving the equation (denoted by Sol t) are presented in Table III. The results obtained with
the meshes (a) and (b) are very accurate. Even for the very irregular mesh (c), the results are
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Table III. Variation in L2 error of q for Dirichlet problems on a cube for different node
spacing patterns and timing results.

Node spacing 12×12 8×18 4×36

u= linear Err q (%) 0.04226 0.091 0.05908
Mat t (s) 176 208 516
Sol t (s) 2 2 2

u=quadratic-1 Err q (%) 0.01355 0.03865 0.02179
Mat t (s) 177 210 510
Sol t (s) 2 2 2

u=quadratic-2 Err q (%) 0.03552 0.06985 1.091
Mat t (s) 176 211 516
Sol t (s) 2 2 2

u=cubic Err q (%) 0.02694 0.1203 1.638
Mat t (s) 176 210 513
Sol t (s) 2 2 2

still acceptable. The CPU time for constructing the matrices is independent of the field being
solved but increases as the mesh becomes irregular. The reason for this is that in the cases of
irregular node distribution, the nearly singular integration occurs when a source node falls into
the adjacent cell of the integration cell, even though the geometry of this example is not a thin
structure. The CPU time for solving the equation is kept constant in all cases. This is reasonable
as the numbers of nodes for all the meshes are the same. The nearly singularity has been dealt
with by scheme described in Section 4.1. This example clearly demonstrates the robustness of our
method.

5.3. Dirichlet problems on an elbow pipe

In order to show the advantages of the meshless nature of the BFM, a problem with more
complicated geometry is solved here. The geometry and its main dimensions are shown in Figure 9.
Three sets of nodes, (a) 192 nodes, (b) 334 nodes, and (c) 523 nodes, have been used to obtain
the numerical solutions. The node distribution and integration cells are shown in Figure 10. When
the number of nodes distributed along one direction in the parametric space of a surface is less
than 4, the variables on the surface are interpolated by the mixed interpolation scheme described
in Section 2. Dirichlet boundary conditions according to the analytical solutions (Equations (31)–
(34)) are imposed on all faces of the elbow pipe. The elbow pipe is a thin shell structure, thus,
nearly singular integrals arises, which has been evaluated by the scheme described in Section 4.1.
The L2 errors of nodal values of q (denoted by Err q) and time required for constructing the
coefficient matrices (denoted by Mat t) for various analytical fields are displayed in Table IV.
Again, the CPU time is independent of the solved field and increases as more nodes are used.
Numerical results of the normal flux q along the middle ring (see Figure 9) for the cubic analytical
field (Equation (34)) are shown in Figure 11. It is seen that the numerical results obtained with
the node sets (b) and (c) are in good agreement with the exact solutions. It should be pointed out
that the preparation of the input data for this problem is very simple. Only eight panels on the

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:320–337
DOI: 10.1002/nme



A BOUNDARY FACE METHOD FOR 3D POTENTIAL PROBLEMS 335

Figure 9. An elbow pipe and its main dimensions.

Figure 10. Node distribution and integration cells on an elbow pipe.

Table IV. Variation in L2 error of q obtained by different sets of nodes for Dirichlet problems
on an elbow pipe and timing results.

Number of nodes 192 334 523

u= linear Err q (%) 2.232 0.9633 0.7815
Mat t (s) 14 37 80

u=quadratic-1 Err q (%) 1.458 0.6227 0.4624
Mat t (s) 14 36 80

u=quadratic-2 Err q (%) 2.114 0.7647 0.5919
Mat t (s) 13 37 80

u=cubic Err q (%) 2.135 0.7998 0.5462
Mat t (s) 13 36 80
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Figure 11. Normal flux, q , along the middle ring of an elbow pipe.

surface of the elbow pipe are defined and the boundary nodes and integration cells are generated
automatically. The BFM is flexible and convenient, and could be an important step toward automatic
simulation.

6. CONCLUSIONS

A BFM has been proposed for solving 3D potential problems. The method provides a new imple-
mentation of the BNM. In this new implementation, no elements are used for boundary integration
or geometric approximation. Boundary integrations are performed using background cells, which
are very easy to construct using only the isocurves in the parametric space of each boundary
face. The integral quantities, such as the coordinates of Gaussian points, the Jacobian, and the
out normal are calculated directly from the faces to avoid geometric errors. A mixed variable
interpolation scheme of 1-D MLS and Lagrange Polynomial for long and narrow faces and an
adaptive integration scheme for nearly singular integrals have been developed.

The BFM has been verified through a number of numerical examples with different geometries,
boundary condition types and known analytical fields. It was observed that the solution is accurate
for the potentials and fluxes on the boundary and inside the domain. High rates of convergence
have been achieved. Our method can not only provide much more accurate results than the BNM,
but also keep reasonable accuracy in some extreme cases, such as very irregular distribution of
nodes and thin shell structures.

The BFM needs only the parametric representation of the surface of a body. As the parametric
representation of created geometry is used in most of CAD packages, it should be possible to exploit
their Open Architecture features, and automatically obtain required coefficients (representation).
Therefore, the BFM has real potential to seamlessly interact with CAD software. Coupling the
BFM with CAD software to handle arbitrary trimmed surfaces is an ongoing work.
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By coupling with the FMM [12–14], the BFM may be able to perform large-scale computations
for complicated structures. This is planned in the near future.
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